
www.ioug.org INDEPENDENT ORACLE USERS GROUP ◾ 13

Quick Tips on Linux HugePages
By Yong Huang

The following are a few quick and practical tips on using Linux HugePages on servers
that run Oracle databases.

1. Be generous first and dynamically shrink later.

If you don’t want to be accurate in calculating how much memory to allocate for
HugePages, give a rough and very generous estimate. Start all Oracle instances on
the box. (To save time, startup nomount is enough.) Check the difference between
HugePages_Free and HugePages_Rsvd, which is the wastage, because HugePages_
Free includes reserved but not actually used memory. For example:

$ grep Huge /proc/memory
...
HugePages_Total: 3190
HugePages_Free: 2458
HugePages_Rsvd: 2341

2458-2341=117 pages of HugePages or 234 MB memory (assumes 2 MB page
size) will never be used. You do not have to wait until the instances have been used
for a while; that would increase both HugePages_Free and HugePages_Rsvd, but not
the difference between them.

Now, we can dynamically shrink HugePages to reduce wastage. Let’s cut that down
to, say, 10 pages. So we should decrease HugePages_Total by 117-10=107. That is,
change 3190 to 3190-107=3083.

echo 3083 > /proc/sys/vm/nr_hugepages

cat /proc/sys/vm/nr_hugepages to confirm the number has been reduced to 3083.
Update vm.nr_hugepages in /etc/sysctl.conf with this number so it will take effect on
the next reboot.

14 ◾ INDEPENDENT ORACLE USERS GROUP www.ioug.org

The advantage of over-allocating HugePages at the beginning is that it saves time in
getting the memory allocation right on the first try. In addition, dynamically changing
HugePages allocation ensures no memory is wasted. In the case of shutting down
an Oracle instance for an extended period of time, you can even lower /proc/sys/
vm/nr_hugepages to give the memory back to OS as well as Oracle PGA. But then
if you start back up the previously shut down instance, you have to increase the
nr_hugepages number first, and you may not be able to bring it up fully to the
desired number if the available memory is no longer physically contiguous. When
that happens, you may or may not be able to start the instance depending on the
setting of use_large_pages. If it’s set to true (default), the instance may be started,
but it uses no HugePages at all and you’ll waste lots of HugePages. You can lower
nr_hugepages back down to release the memory back to OS and wait until the next
server reboot for sufficient contiguous memory. So, think it over whenever you plan to
dynamically lower the value.

2. Seeing is believing.

In older versions of Oracle, the only way to know that HugePages is used is to check
/proc/memory. Later versions show the lines in alert.log (Oracle 11g example):

Total Shared Global Region in Large Pages = 2370 MB (100%)

Large Pages used by this instance: 1185 (2370 MB)
Large Pages unused system wide = 815 (1630 MB)
Large Pages configured system wide = 2000 (4000 MB)
Large Page size = 2048 KB

The instance in this example clearly has too much unused HugePages. I would cut
configured HugePages down from 2,000 to 2,000-815+overhead, say, 1,200. (The
overhead may be related to the number of shared memory segments for the instance
as shown in ipcs or sysresv, among other things.)

In 12c, the alert.log has these lines instead (excluding the annoying timestamp lines
profusely intercalated):

 PAGESIZE AVAILABLE_PAGES EXPECTED_PAGES ALLOCATED_PAGES ERROR(s)
 4K Configured 5 5 NONE
 2048K 1620 1617 1617 NONE

www.ioug.org INDEPENDENT ORACLE USERS GROUP ◾ 15

This example only wastes three HugePages, corresponding to the following /proc/
meminfo values where 10-7=3:

HugePages_Total: 1620
HugePages_Free: 10
HugePages_Rsvd: 7

Beginning with Linux kernel 2.6.29 or Red Hat Enterprise Linux 6 and possibly later
minor releases of RHEL 5, /proc/pid/smaps provides clues about HugePages usage
as well.

cat /proc/<any pid of Oracle instance>/smaps
...
61000000-a7000000 rwxs 00000000 00:0c 1146885 /SYSV00000000 (deleted)
Size: 1146880 kB
Rss: 0 kB
Pss: 0 kB
Shared_Clean: 0 kB
Shared_Dirty: 0 kB
Private_Clean: 0 kB
Private_Dirty: 0 kB
Referenced: 0 kB
Anonymous: 0 kB
AnonHugePages: 0 kB
Swap: 0 kB
KernelPageSize: 2048 kB ← 2MB HugePage size
MMUPageSize: 2048 kB ← 2MB HugePage size

The last two lines showing 2 MB instead of 4 KB page size are the telltale sign that
HugePages are used.

Beginning with Oracle 12c, there’s yet another way to check the usage. Fixed table
x$ksmssinfo (probably Kernel Service, Memory Sga OS (level) Info) not only can tell
you whether the memory page size is that of HugePages, but can even map the
SGA components with shared memory segments. The example below is from Oracle
12.1.0.2, where in-memory area of 112 MB is configured. (I removed the ipcs lines
irrelevant to this Oracle instance in the example.)

16 ◾ INDEPENDENT ORACLE USERS GROUP www.ioug.org

SQL> select “AREA NAME”, “SEGMENT SIZE”, “SIZE”, pagesize, shmid from x$ksmssinfo;

AREA NAME SEGMENT SIZE SIZE PAGESIZE SHMID
-------------------- ------------ ---------- ---------- ----------
imc area rdonly 0 83886080 83886080 2097152 87588873
Variable Size 3288334336 3254779904 2097152 87621642
imc area default 0 3288334336 33554432 2097152 87621642
Redo Buffers 14680064 13844480 2097152 87654411
Fixed Size 4194304 2932736 2097152 87556104
skgm overhead 20480 20480 4096 87687180

SQL> !ipcs -m

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
...
0x00000000 87556104 oracle 640 4194304 25
0x00000000 87588873 oracle 640 83886080 25
0x00000000 87621642 oracle 640 3288334336 25
0x00000000 87654411 oracle 640 14680064 25
0x639dac14 87687180 oracle 640 20480 25

As you can see, this fixed table tells us HugePages is used except for Oracle’s
interface to the OS in the generic memory management layer (skgm overhead),
which still uses the default 4 KB page size. The largest HugePages segment of
3288334336 bytes in size maps to two areas inside Oracle: Variable Size (not the
same as Variable Size shown by SQL*Plus command show sga, which excludes buffer
cache) used for buffer cache and various SGA pools (shared pool, java pool, large
pool, etc.), and part of the in-memory area or column store (imc area default 0). The
second largest segment of 83886080 bytes contains the other part of in-memory
area (imc area rdonly 0). The remaining two HugePages segments are obvious. In
spite of small sizes, they are not fully used by Oracle.

For more about HugePages, see http://yong321.freeshell.org/oranotes/
HugePages.txt and the references cited therein.

About the Author
Yong Huang is a DBA at MD Anderson Cancer Center in Houston. Before
joining MD Anderson, Yong worked as an Oracle DBA and consultant at
Schlumberger, Unocal Oil, Nationwide Insurance, Electronic Arts and eBay.

	IOUG_0570915_TipBook15 15.pdf
	IOUG_0570915_TipBook15 16
	IOUG_0570915_TipBook15 17
	IOUG_0570915_TipBook15 18

