
4th Qtr 2012 ■ Page 15

userids, perhaps to drop users no longer employed or to decommission certain
applications no longer used, it’s difficult to identify which application uses
such a role. Use of such names not representative of the application for which
they are used leads to a higher chance of mistakes and additional
identification work. Again, a close coordination among the DBAs, the
application team and the vendors is needed to identify the users conclusively.

Unfortunately, there’s no comment field in the views DBA_USERS or DBA_ROLES,
which would have been very useful. Some applications use two or more schemas.
You may find an application whose schema names don’t have anything to tie it
back to that application. But this is only a minor challenge compared to a legacy
client-server application whose users are actual database users instead of users
in the mid-tier. You need to develop an effective method to identify these users
as needed. One approach is to always name the users with a short prefix or
suffix identifying the application. Watch out for users of a different application
that happen to use the same prefix or suffix. Another way is to assign all these
users to an application specific profile, which is visible in DBA_USERS, not for
the purpose of managing their resource usage — although you can —
but for identification or grouping of these users.

In spite of these efforts, several of these resource names within the database
scope may not be named intuitively. Even if they are named correctly, they
may still need some manual effort to make them clearer. Nothing can
completely replace documentation that clearly describes their usage, function
and cross-schema relationship.

Client Connection Management
You should create a TNS connect identifier unique to an application — even
though connect identifiers of all the applications point to the same physical
database. Every application connected to a shared database environment is
subject to change, whether it is being migrated to another database for various
reasons, being decommissioned, etc. When you decide to move this application
to a different database for any reason (e.g., to upgrade/downgrade the
database version or to move the data closer to other data in a different
database to avoid database links), you only need to change the hostname in
the connect string in the tnsnames.ora file and not the configuration of the
application. You can get the most advantage if the TNS entries are centrally
located. For example, everyone reads one tnsnames.ora located in a network
share or queries an OID (Oracle LDAP) server to resolve the connect identifier.
With this arrangement, the data migration is completely transparent to the
application support teams.

Although changes for one specific application are infrequent, it could be a
challenge to keep track of these changes when you have hundreds of connect
identifiers. You will need to determine which database is accessed by which string
from the regular tnsnames.ora. To make it simple, or do it programmatically,
you could change the format of the tnsnames.ora. Fortunately, each stanza in
tnsnames.ora can actually be written on one single line. Doing so allows a simple
grep command — possibly piped to awk or perl — to easily query anything from
the file. If the connect identifiers are stored in OID, you can dump all the entries
into a file using a simple script available on http://yong321.freeshell.org/
oranotes/Ldap2Tnsnames.txt. The result is a usable tnsnames.ora file in the
grep-friendly format of each entry on one line.

Some users, particularly those using Java, may require the use of hardcoded
hostname, port and SID for their applications, which will create problems in
otherwise transparent data migration, in addition to a separate headache
during rolling maintenance work on a RAC database. DBAs may advise the users

Managing a Shared Database
Environment

By Yong Huang
Edited by Arup Nanda

 I n many shops, an Oracle database is not dedicated to
a single application. Multiple small, mostly unrelated,
applications store data in the same database to save

license costs, simplify database management, eliminate
database links and minimize per-database resource usage
similar to how companies save on overhead when merging.
This article explains factors to carefully consider in such a
shared database environment. You will also learn what to
consider when using one database for many applications.

Resource Naming Conflict and Identification
This is just one database, so there’s only one namespace for certain types of
objects such as public synonyms, public database links, roles, users, etc. Just as a
popular Internet domain name is worth tens of thousands of dollars, a good
name with a databasewide namespace is a precious resource. For instance, a
database hosting multiple applications for a hospital may find it difficult to
accept a vendor’s application that requires a public synonym called PATIENT
pointing to a table in the schema of this application, because such a common
name in this environment may be taken by another application. The DBAs, the
application team and the third-party vendors will need to work together to
resolve the issue. You have to make a decision: Either mandate that such highly
generic public synonyms can be exclusively used by the most important
application, or ban all public synonyms altogether (except Oracle’s own). Almost
all public synonyms can be recreated as private synonyms in the schemas that
need this synonym, removing the need for public synonyms altogether. The same
solution may not apply to the other types of objects within a namespace with a
database scope, such as users or roles. Fortunately, in reality, rarely do we find a
vendor whose application creates a user with a name so generic or popular that it
causes a name conflict, as is the case of public synonyms.

As a result of databasewide namespace restrictions, it may be a challenge to
easily identify the usernames in a shared database environment. For example,
an application named Autosys creates a role UJOADMIN, which is not
representative of the application name. If you ever perform a cleanup of

continued on page 16

Page 16 ■ 4th Qtr 2012

Granting the commonly used RESOURCE role has a side effect never corrected by
Oracle; the UNLIMITED TABLESPACE privilege is a part of it. Developers or vendors
find this privilege a convenience to obviate the need to give users UNLIMITED
QUOTA on the tablespaces they use. But, in a shared environment, this privilege
should be reserved for DBAs only, as it permits the grantee to create a segment
in any tablespace. Incidentally, in Oracle Database 11gR2, if the grantee has
both RESOURCE role and certain tablespace quotas, revoking RESOURCE will
revoke all the quotas as well as UNLIMITED TABLESPACE privilege at the same
time. So remember to give the quotas back after the revoke.

Performance Management
Oracle provides no facility to limit a user’s usage of the shared pool. In a
shared database environment, you may need to monitor per-schema SQL area
usage with

select parsing_schema_name, sum(sharable_mem)
from v$sqlarea
group by parsing_schema_name
order by 2;

Add “having sum(sharable_mem) > ...” as needed. It’s not uncommon to see
an application that does not use bind variables taking a big chunk of the
shared pool with thousands of literal SQLs. Although an ultimate solution is a
rewrite of the code, a schema-level logon trigger to set CURSOR_SHARING to
FORCE may be created to correct most of the literal SQLs:

create trigger appuser.logon_set_cursorsharing
after logon on appuser.schema
begin
 execute immediate ‘alter session set cursor_sharing=force’;
end;
/

Note: This workaround is just a suggestion. Please ensure this is an agreed
process in your environment before usage. Also note that a mistake in this
trigger may lock out logins for that user.

In an emergency related to a spike in execution of non-bind SQL in the shared
pool resulting in fragmentation and ORA-4031 errors, run a harmless DDL
(such as granting the SELECT privilege to a user that already has that
privilege) on the table or view referenced by the many literal SQLs to
selectively invalidate cursors, which is less damaging than flushing the entire
shared pool. Then, request the application server admin to reconnect to the
database for the logon trigger to take effect. Of course, not all unjustified high
usage of shared pool is due to literal SQLs; for example, SQLs may be written
differently simply due to a large number of possible permutations of column
names, and a redesign in a larger scope is needed.

A logon trigger is a simple solution to meet the requirement of those vendors
who insist on certain database parameter settings and who have no knowledge
of the coexisting schemas in the database. In our experience, the majority of
the required parameters can be set with ALTER SESSION.

The other portion of the SGA, the buffer cache, is another story. Breaking down
the contents of the buffer cache into usage by each user is more challenging
than that of shared pool. Theoretically, you could join V$BH (or X$BH) and
DBA_EXTENTS and group by OWNER of the extents. But such a query will affect

on how to change it to using a simple connect identifier. For example, if the
application that uses JDBC supports OCI driver, the connection string is simply

db_url = “jdbc:oracle:oci:@myapp”;

along with appropriate sqlnet.ora and either tnsnames.ora or ldap.ora (in
case of LDAP). If the application only supports the JDBC thin driver and you
have an OID to centrally provide name resolution, the connection string can
be written as:

db_url = “jdbc:oracle:thin:@ldap://oidhostname:389/myapp,cn=OracleContext,dc=mycompan
y,dc=com”;

Some application software only provides a configuration GUI that takes the
database hostname, port and SID. In one case, we identified the XML file
generated by the GUI and manually changed the XML file to use our in-house
OID. The vendor never approved or disapproved this change, but the
application team is happy with this manual change.

Security
Many software vendors are small companies with little experience with an
enterprise environment. The software assumes that the database is dedicated
to their application and requests privileges more than actually needed —
sometimes even a DBA role just to make programming easy. Applications that
come into a shared database environment must go through a thorough check
on their security requirement. System privileges in the form of <action> ANY
<object>, such as SELECT ANY TABLE, CREATE ANY SEQUENCE and ANALYZE
ANY, should be removed from all roles except DBA, EXP|IMP_FULL_DATABASE
and a few others. Users or vendors must be advised that these ANY privileges
allow them to take action in any schema, which they may find, to their
surprise, is not their intention.

The system privilege SELECT ANY TABLE is often abused for a different reason.
It’s rather unfortunate that for user A to query any of user B’s tables or views,
Oracle provides no simple role or privilege just to do that. Developers or
vendors often resort to this system privilege as a quick fix, even though they
honestly do not have interest in peeking at data in schemas other than the few
used by their own application. You should advise users to grant SELECT
privilege on each of B’s tables to A and remind them to do the same when B
creates new tables in the future.

You may want to grant SELECT_CATALOG_ROLE to certain power users or
developers in order to allow them to tune or troubleshoot their application.
This may be acceptable if the other schema does not have any sensitive data or
confidential programming logic in the form of PL/SQL code including trigger
code or in view definitions. You may consider wrapping the PL/SQL code, but it’s
not a good defense because unwrapping tools are freely available on the Internet.
Alternatively, these power users should only be granted SELECT privilege on
certain views, such as V$SESSION and V$LOCK, on an as-needed basis.

You should grant privileges WITH GRANT OPTION sparingly and after careful
consideration because this option is inheritable. The “downstream” grant is
normally used by a power user or application admin to grant an application-
specific role to individual database users of the application using a client-
server model. If the power user further grants WITH GRANT OPTION, it’s
possible that some end users, even those not using this application, may one
day be found to have a role this application team has never expected.

Managing a Shared Database Environment continued from page 15

4th Qtr 2012 ■ Page 17

downtime depending on factors such as the amount of PL/SQL code, size of
data dictionary, etc. The migration of the data to a different server with zero or
close to zero downtime requires setting up, at least temporarily, some sort of
replication mechanism such as Data Guard or GoldenGate. But we know the
database has many small applications, so there is another way to migrate the
data: export and import schema or schemas of one application at a time. The
advantage of this approach is not just the savings in overall downtime but its
simplicity with near zero downtime. There’s no need to set up a standby or
even the need for transportable tablespaces. Unless the application is truly
24/7, this approach achieves practically zero downtime because the users’
downtime can be exploited. The DBAs work with one application team at a
time to negotiate a zero-usage window in which only a small amount of data
needs to be exported and imported into the target database.

The same approach can be used to upgrade a database or even OS or hardware
because the target database has no restriction on versions, OS or the hardware
platform. After all the user schemas are migrated, the old database can be
decommissioned. Oracle is never literally upgraded but always newly installed,
so occasional bugs or restrictions associated with the version upgrade can be
avoided. There may even be some unknown advantage in not using the same
datafile images for more than just a few years.

Make sure you bundle schemas that should be migrated together. Schemas used
by an application are usually — but not always — named intuitively, and
multiple applications may have shared schemas that are not obvious to the DBAs.
This knowledge is usually available with the application team and can be further
supplemented by checking the data dictionary for cross-schema references.
For instance, you can query against DBA_DEPENDENCIES, DBA_SOURCE, etc.,
to understand the inter-schema dependencies. Similarly, one schema may
even be used by more than one application. We had such an incident that we
resolved by searching through the history of the application.

Tablespace
Tablespace belongs to a namespace with databasewide scope. You should make
sure that a vendor’s installation script should not use a tablespace name so
generic that it may collide with existing or future tablespace names.
Fortunately, this is rarely an issue in reality. If the application does not specify
a tablespace, you may choose to use a generic tablespace to host multiple
small applications. This practice has its own advantages and disadvantages.
A large number of tablespaces demand more attention from the DBAs for their
maintenance. They also have a lingering effect: Even after the tablespaces are
dropped, the entries remain in the SYS.TS$ table and may cause performance
problems in recursive SQLs involving this table. On the other hand, the
downside of using a generic tablespace is that a corruption in or recovery of
the tablespace may affect more than one application. Additionally, although a
minor annoyance, it’s impossible to break down buffer cache usage into
applications as discussed previously.

Certain applications require significantly more temporary space than others
for sorting, hashing or other uses involving temporary tablespaces. You should
create dedicated temporary tablespaces for these users. Oracle provides no
user-specific undo tablespace. In RAC, these users may be bound through
service to a dedicated instance where the undo tablespace for that instance is
more or less dedicated to their own use.

Some DBAs may find it convenient to use bigfile tablespaces, but be aware of
one drawback of bigfile tablespaces. If there is corruption too extensive for
RMAN block media recovery to handle but not extensive enough to corrupt the
entire datafile, the whole tablespace will still have to be brought offline during

the performance of the database. Instead, you may want to break down the
buffer cache usage by tablespace:

select name, count(*)
from v$tablespace a, v$bh b
where a.ts# = b.ts#
group by name
order by 2;

It serves the same purpose from the business point of view as long as each
application has its own tablespace, which of course is not always true.

As in the case of shared pool, Oracle provides no facility to limit a user’s usage
of the buffer cache. SQL tuning is the best overall solution. The less the buffer
gets, the less the use of buffer cache. In addition, with the assurance from My
Oracle Support, consider setting _SERIAL_DIRECT_READ to TRUE to bypass
buffer cache for full table scans. (Oracle wisely changed its default value to the
new value AUTO beginning with 11.2.0.2.) Use parallel executions if needed.
While you can simply set the parallel DEGREE clause on a table or index, be
warned that all SQL accessing that table or index will attempt to use parallel
query slaves if available. Alter table NOCACHE to shorten the time the blocks stay
in cache after a full table scan. Configure a recycle pool and assign infrequently
used, fairly large tables or indexes to it. These are all measures to help reduce
disproportionate or inefficient use of the precious buffer cache. They can be
implemented with either a logon trigger (when setting the parameter) or a
change to the segment property, in the end creating a more friendly shared
database environment in which no user uses the cache excessively.

There are other ways to limit usage of other types of resources, such as CPU,
parallel degree, execution time, undo, etc. You can choose to implement
Oracle Resource Manager so that when the user’s limit is reached, the session
is usually terminated or queued for execution. We, however, found this
solution not optimal and chose instead to regularly monitor sessions and
advise the application teams or help tune the applications.

You can manage performance management with database services,
particularly in a RAC database. Unlike connect identifiers, it’s better to have
database services not to have a one-to-one mapping to the applications. It’s
common practice to have applications with similar performance
characteristics share one service. In addition, in a shared database
environment, if some applications are somewhat related to each other, they’re
best assigned the same service. Applications with behaviors leaning toward
OLTP can use a service that runs only on certain instances of the RAC
database. Applications with a DSS slant can use a service that only runs on a
different set of instances. The two sets of instances can have different
parameter settings to match the behavior of the applications they serve.

Finally, database jobs in a shared database are better scheduled on different
times if they use a fair amount of resources. If the business requires two jobs
to be run at the same time, and if the database is on RAC, consider separating
the jobs on different nodes. If the jobs are submitted from the application
servers, the DBAs may have to coordinate with various teams to find the best
scheduling windows.

Database Upgrade or Migration
A shared database may have a new option for data migration or database
upgrade. Suppose the database contains 1 TB data with many schemas used by
a number of applications but no single schema exceeds 100 GB. A
conventional database upgrade probably requires an hour or more of

continued on page 18

Page 18 ■ 4th Qtr 2012

Conclusion
Oracle is a powerful but expensive database software. Many small- to
medium-sized applications can store their data inside one physical database.
Peaceful coexistence of the schemas requires not only planning by the DBAs,
but also cooperation and sometimes compromise between different
application teams. If one or a few applications are dramatically different in
database setting from the others, they may be grouped and allowed to run on
one or more instances of the RAC database. But if a dedicated but low resource
usage database must be created, one server running multiple databases can be
considered before budgeting for a separate server to save license cost and
relieve some administrative workload.

Acknowledgement: Many ideas in this article are contributed by my
co-workers at MD Anderson Cancer Center.

■ ■ ■ About the Author
Yong Huang is a DBA at MD Anderson Cancer Center in Houston.
Before joining MD Anderson, he worked as an Oracle DBA/consultant at
Schlumberger, Unocal Oil, Nationwide Insurance, Electronic Arts
and eBay.

the recovery period. On the other hand, if a smallfile tablespace encounters
such corruption, it may be limited to only one of many datafiles and the
applications may run just fine if the queries don’t need to visit the offlined file.
This consideration between bigfile and smallfile tablespaces is more important
in a shared database environment for the generic tablespace hosting multiple
small applications.

Other Miscellaneous Considerations
Before accepting a vendor’s software into a shared database environment,
you must clarify two important requirements: the database version and the
character set. Fortunately, in our experience, most vendors can accept the latest
major release of the Oracle and AL32UTF8 character set. Therefore, you can
create the most accommodating shared database with this character set and, as
of this writing, one minor release of Oracle Database 11gR2 database version.

Some companies have annual or more frequent data recovery drills to test the
validity of the backed-up data. The backup is restored into a new temporary
database, or the standby database is temporarily opened for read-write (after
you set a restore point in order to flashback after the drill). The users connect
to this new (or standby) database to verify their data. Don’t forget to organize
all application teams to test at the same time. It would be counterproductive if
one team requested to check the data in January and another team insisted
they check only in February.

Managing a Shared Database Environment continued from page 17

Submit an Article to IOUG
SELECT Journal is IOUG’s Quarterly Publication
We are always looking for new authors and articles for 2013.

Interested in submitting an article? Visit www.ioug.org and click on
Publications > SELECT Journal for more information. Questions? Contact
SELECT Journal Managing Editor Theresa Wojtalewicz at (312) 673-5870,
or email her at twojtalewicz@ioug.org.

IOUG Is Looking for New Materials for
the 2013 Best Practices Booklet
Submissions should be 500-1,000 words long; due to space constraints,
we ask that your submission have a specific focus as opposed to any
overarching database principles. Tips can range from beginning- to
advanced-level skills and should include the actual code and queries

used (screenshots and other small graphics are also acceptable).

If you have any questions about this project, please contact our Best Practices
Booklet Managing Editor Theresa Wojtalewicz, at (312) 673-5870, or email
her at twojtalewicz@ioug.org.PracticesTips & Best

Booklet

IOUG

A Compilation of Technical Tips from

the Independent Oracle Users Group

www.ioug.org

Seventh Edition

Volume 19 | Number 3

Third Quarter 2012

For the Complete Technology & Database Profess ional

w w w . i o u g . o r g

Security
Oracle Enterprise Manager 12c

Infrastructure and Operational Security

by Janet Wakeley

Resolving Child Cursor Issues Resulting

in Mutex Waits

by Martin Klier

Application Development with Oracle

Advanced Queuing

by Jeffrey Jacobs

